Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(1): e0160322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36507653

RESUMO

Polyethylene terephthalate (PET) is a prevalent synthetic polymer that is known to contaminate marine and terrestrial environments. Currently, only a limited number of PET-active microorganisms and enzymes (PETases) are known. This is in part linked to the lack of highly sensitive function-based screening assays for PET-active enzymes. Here, we report on the construction of a fluorescent biosensor based on Comamonas thiooxidans strain S23. C. thiooxidans S23 transports and metabolizes TPA, one of the main breakdown products of PET, using a specific tripartite tricarboxylate transporter (TTT) and various mono- and dioxygenases encoded in its genome in a conserved operon ranging from tphC-tphA1. TphR, an IclR-type transcriptional regulator is found upstream of the tphC-tphA1 cluster where TPA induces transcription of tphC-tphA1 up to 88-fold in exponentially growing cells. In the present study, we show that the C. thiooxidans S23 wild-type strain, carrying the sfGFP gene fused to the tphC promoter, senses TPA at concentrations as low as 10 µM. Moreover, a deletion mutant lacking the catabolic genes involved in TPA degradation thphA2-A1 (ΔtphA2A3BA1) is up to 10,000-fold more sensitive and detects TPA concentrations in the nanomolar range. This is, to our knowledge, the most sensitive reporter strain for TPA and we demonstrate that it can be used for the detection of enzymatic PET breakdown products. IMPORTANCE Plastics and microplastics accumulate in all ecological niches. The construction of more sensitive biosensors allows to monitor and screen potential PET degradation in natural environments and industrial samples. These strains will also be a valuable tool for functional screenings of novel PETase candidates and variants or monitoring of PET recycling processes using biocatalysts. Thereby they help us to enrich the known biodiversity and efficiency of PET degrading organisms and enzymes and understand their contribution to environmental plastic degradation.


Assuntos
Técnicas Biossensoriais , Comamonas , Monitoramento Ambiental , Plásticos , Polietilenotereftalatos , Comamonas/enzimologia , Comamonas/genética , Ecossistema , Hidrolases/genética , Hidrolases/metabolismo , Plásticos/metabolismo , Polietilenotereftalatos/metabolismo , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Microplásticos/metabolismo
2.
J Am Chem Soc ; 140(16): 5544-5559, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29618204

RESUMO

The Rieske dioxygenases are a major subclass of mononuclear nonheme iron enzymes that play an important role in bioremediation. Recently, a high-spin FeIII-(hydro)peroxy intermediate (BZDOp) has been trapped in the peroxide shunt reaction of benzoate 1,2-dioxygenase. Defining the structure of this intermediate is essential to understanding the reactivity of these enzymes. Nuclear resonance vibrational spectroscopy (NRVS) is a recently developed synchrotron technique that is ideal for obtaining vibrational, and thus structural, information on Fe sites, as it gives complete information on all vibrational normal modes containing Fe displacement. In this study, we present NRVS data on BZDOp and assign its structure using these data coupled to experimentally calibrated density functional theory calculations. From this NRVS structure, we define the mechanism for the peroxide shunt reaction. The relevance of the peroxide shunt to the native FeII/O2 reaction is evaluated. For the native FeII/O2 reaction, an FeIII-superoxo intermediate is found to react directly with substrate. This process, while uphill thermodynamically, is found to be driven by the highly favorable thermodynamics of proton-coupled electron transfer with an electron provided by the Rieske [2Fe-2S] center at a later step in the reaction. These results offer important insight into the relative reactivities of FeIII-superoxo and FeIII-hydroperoxo species in nonheme Fe biochemistry.


Assuntos
Comamonas/enzimologia , Dioxigenases/metabolismo , Ferro/metabolismo , Peróxidos/metabolismo , Comamonas/química , Comamonas/metabolismo , Dioxigenases/química , Ferro/química , Modelos Moleculares , Peróxidos/química , Análise Espectral , Termodinâmica
3.
Appl Microbiol Biotechnol ; 102(11): 4843-4852, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29696333

RESUMO

The biodegradation pathway of 3-aminobenzoate has been documented, but little is known about the sequence and biochemical properties of the proteins involved. In the present study, a 10,083-bp DNA fragment involved in 3-aminobenzoate degradation was identified in 3-aminobenzoate-degrading Comamonas sp. strain QT12. The mabA gene, whose encoded protein shares 39% amino acid sequence identity with 3-hydroxybenzoate 6-hydroxylase of Polaromonas naphthalenivorans CJ2, was identified on this DNA fragment, and the mabA-disrupted mutant was unable to grow on and convert 3-aminobenzoate. MabA was heterologously expressed in Escherichia coli and purified to homogeneity as an approximately ~ 48-kDa His-tagged protein. It was characterized as 3-aminobenzoate 6-hydroxylase capable of catalyzing the conversion of 3-aminobenzoate to 5-aminosalicylate, incorporating one oxygen atom from dioxygen into the product. It contains a non-covalent but tightly bound FAD as the prosthetic group and NADH as an external electron donor. 5-Aminosalicylate was produced with equimolar consumption of NADH. The apparent Km and kcat values of the purified enzyme for 3-aminobenzoate were 158.51 ± 4.74 µM and 6.49 ± 0.17 s-1, respectively, and those for NADH were 189.85 ± 55.70 µM and 7.41 ± 1.39 s-1, respectively. The results suggest that mabA is essential for 3-aminobenzoate degradation in strain QT12, and that 3-aminobenzoate is the primary and physiological substrate of MabA.


Assuntos
Comamonas/enzimologia , Comamonas/genética , Oxigenases de Função Mista/genética , meta-Aminobenzoatos/metabolismo , Sequência de Aminoácidos
4.
Int J Biol Macromol ; 112: 1115-1121, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29452184

RESUMO

The important platform polysaccharide N-acetylglucosamine (GlcNAc) has great potential to be used in the fields of food, cosmetics, agricultural, pharmaceutical, medicine and biotechnology. This GlcNAc is being produced by traditional methods of environment-unfriendly chemical digestion with strong acids. Therefore, researchers have been paying more attention to enzymatic hydrolysis process for the production of GlcNAc. Hence, in this study, we isolated novel chitinase (Escherichia fergusonii) and chitosanase (Chryseobacterium indologenes, Comamonas koreensis) producing strains from Korean native calves feces, and developed the potential of an eco-friendly microbial progression for GlcNAc production from swollen chitin and chitosan by enzymatic degradation. Maximum chitinase (7.24±0.07U/ml) and chitosanase (8.42±0.09, 8.51±0.25U/ml) enzyme activity were reached in submerged fermentation at an optimal pH of 7.0 and 30°C. In this study, sucrose, yeast extract, (NH4)2SO4, and NaCl were found to be the potential enhancers of exo-chitinase activity and glucose, corn flour, yeast extract, soybean flour, (NH4)2SO4, NH4Cl and K2HPO4 were found to be the potential activator for exo-chitosanase activity. Optimum concentrations of the carbon sources for enhanced chitinase activity were 9.91, 3.21, 9.86, 1.66U/ml and chitosanase activity were 1.63, 1.13, 2.28, 3.71, 9.02, 4.93, and 2.14U/ml. These enzymes efficiently hydrolyzed swollen chitin and chitosan to N-acetylglucosamine were characterized by thin layer chromatography and were further confirmed by high-pressure liquid chromatography. From a commercial perspective, we isolated, optimized and characterized exochitinase from Escherichia fergusonii (HANDI 110) and chitosanase from Chryseobacterium indologenes (HANYOO), and Comamonas koreensis (HANWOO) for the large-scale production of GlcNAc facilitating its potential use in industrial applications.


Assuntos
Acetilglucosamina/biossíntese , Quitinases/biossíntese , Chryseobacterium/enzimologia , Comamonas/enzimologia , Escherichia/enzimologia , Glicosídeo Hidrolases/biossíntese , Carbono/farmacologia , Quitina/metabolismo , Quitosana/metabolismo , Cromatografia em Camada Delgada , Hidrólise , Nitrogênio/farmacologia , Filogenia , Sais/farmacologia
5.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038259

RESUMO

The 1,125-bp mabB gene encoding 5-aminosalicylate (5ASA) 1,2-dioxygenase, a nonheme iron dioxygenase in the bicupin family that catalyzes the cleavage of the 5ASA aromatic ring to form cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate in the biodegradation of 3-aminobenzoate, was cloned from Comamonas sp. strain QT12 and characterized. The deduced amino acid sequence of the enzyme has low sequence identity with that of other reported ring-cleaving dioxygenases. MabB was heterologously expressed in Escherichia coli cells and purified as a His-tagged enzyme. The optimum pH and temperature for MabB are 8.0 and 10°C, respectively. FeII is required for the catalytic activity of the purified enzyme. The apparent Km and Vmax values of MabB for 5ASA are 52.0 ± 5.6 µM and 850 ± 33.2 U/mg, respectively. The two oxygen atoms incorporated into the product of the MabB-catalyzed reaction are both from the dioxygen molecule. Both 5ASA and gentisate could be converted by MabB; however, the catalytic efficiency of MabB for 5ASA was much higher (∼70-fold) than that for gentisate. The mabB-disrupted mutant lost the ability to grow on 3-aminobenzoate, and mabB expression was higher when strain QT12 was cultivated in the presence of 3-aminobenzoate. Thus, 5ASA is the physiological substrate of MabB.IMPORTANCE For several decades, 5-aminosalicylate (5ASA) has been advocated as the drug mesalazine to treat human inflammatory bowel disease and considered the key intermediate in the xenobiotic degradation of many aromatic organic pollutants. 5ASA biotransformation research will help us elucidate the microbial degradation of these pollutants. Most studies have reported that gentisate 1,2-dioxygenases (GDOs) can convert 5ASA with significantly high activity; however, the catalytic efficiency of these enzymes for gentisate is much higher than that for 5ASA. This study showed that MabB can convert 5ASA to cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate, incorporating two oxygen atoms from the dioxygen molecule into the product. Unlike GDOs, MabB uses 5ASA instead of gentisate as the primary substrate. mabB is the first reported 5-aminosalicylate 1,2-dioxygenase gene.


Assuntos
Comamonas/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Biocatálise , Biodegradação Ambiental , Clonagem Molecular , Comamonas/efeitos dos fármacos , Comamonas/genética , Comamonas/crescimento & desenvolvimento , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/genética , Gentisatos/metabolismo , Cinética , Mesalamina/metabolismo , Mutação , Oxigênio/metabolismo , Especificidade por Substrato , meta-Aminobenzoatos/metabolismo , meta-Aminobenzoatos/farmacologia
6.
Microbiology (Reading) ; 163(11): 1637-1640, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034863

RESUMO

Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1H and 13C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.


Assuntos
Comamonas/genética , Família Multigênica/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Bactérias/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Comamonas/química , Comamonas/enzimologia , Dissacarídeos/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glucose , Antígenos O/isolamento & purificação , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Ramnose
7.
Curr Microbiol ; 74(12): 1411-1416, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28821932

RESUMO

Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.


Assuntos
Benzofuranos/metabolismo , Comamonas/enzimologia , Comamonas/metabolismo , Naftalenos/metabolismo , Tiofenos/metabolismo , Biotransformação , Catecóis/metabolismo , Enzimas/metabolismo , Redes e Vias Metabólicas
8.
J Appl Microbiol ; 120(6): 1542-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26918381

RESUMO

AIMS: To improve the efficiency of asymmetric hydrolysis of 3-(4-chlorophenyl) glutaric acid diamide (CGD) using a recombinant Comamonas sp. KNK3-7 amidase (CoAM) produced in Escherichia coli. METHODS AND RESULTS: The CoAM gene was cloned, sequenced and found to comprise 1512 bp, encoding a polypeptide of 54 054 Da. CoAM-transformed E. coli were able to perform R-selective hydrolysis of CGD; however, complete conversion of 166·2 mmol l(-1) CGD in 28 h could not be obtained. We attempted to optimize the reactivity of CoAM by mutating single amino acids in the substrate-binding domain. Notably, the methionine-substituted L146M mutant enzyme showed increased reactivity, completing the conversion of 166·2 mmol l(-1) CGD in just 4 h. The Km value for L146M was lower than that of CoAM. CONCLUSIONS: We succeeded in creating the L146M mutant of CoAM with increased substrate affinity and found that this was the best mutant for the hydrolysis of CGD. SIGNIFICANCE AND IMPACT OF THE STUDY: Increasing the efficiency of hydrolysis of 3-substituted glutaric acid diamides is useful to improve the synthesis of optically active 3-substituted gamma-aminobutyric acid. This is the first report of efficient hydrolysis of CGD using amidase mutant-producing E. coli cells.


Assuntos
Amidoidrolases/genética , Comamonas/enzimologia , Comamonas/genética , Diamida/química , Glutaratos/química , Engenharia de Proteínas , Amidoidrolases/química , Amidoidrolases/isolamento & purificação , Sítios de Ligação , Clonagem Molecular , Comamonas/metabolismo , Escherichia coli/genética , Hidrólise , Reação em Cadeia da Polimerase , Rhodococcus/enzimologia
9.
Bioelectrochemistry ; 102: 1-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25461755

RESUMO

A new uric acid biosensor was constructed using ferrocene (Fc) induced electro-activated uricase (UOx) deposited within Nafion (Naf) on glassy carbon electrode (GCE). Electro-activation of UOx was successfully achieved by cyclic voltammetry through the electrostatic interaction of Fc with Trp residues within the hydrophobic pockets in UOx. The Naf/UOx/Fc composite was characterised by AFM, FTIR and EDX to ensure proper immobilisation. The interaction of Fc with the enzyme was analysed by Trp fluorescence spectroscopy and the α-helicity of the protein was measured by CD spectropolarimetry. The charge transfer resistance (Rct), calculated from electrochemical impedance spectroscopy, for the modified sensor was lowered (1.39 kΩ) and the enzyme efficiency was enhanced by more than two fold as a result of Fc incorporation. Cyclic voltammetry, differential pulse voltammetry and amperometry all demonstrated the excellent response of the Naf/UOx/Fc/GCE biosensor to uric acid. The sensor system generated a linear response over a range of 500 nM to 600 µM UA, with a sensitivity and limit of detection of 1.78 µA µM(-1) and 230 nM, respectively. The heterogeneous rate constant (ks) for UA oxidation was much higher for Naf/UOx/Fc/GCE (1.0 × 10(-4) cm s(-1)) than for Naf/UOx/GCE (8.2 × 10(-5) cm s(-1)). Real samples, i.e. human blood, were tested for serum UA and the sensor yielded accurate results at a 95% confidence limit.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Compostos Ferrosos/química , Polímeros de Fluorcarboneto/química , Vidro/química , Urato Oxidase/metabolismo , Ácido Úrico/análise , Técnicas Biossensoriais/instrumentação , Comamonas/enzimologia , Eletroquímica , Eletrodos , Ativação Enzimática , Humanos , Cinética , Metalocenos , Urato Oxidase/química , Ácido Úrico/sangue
10.
J Biosci ; 39(5): 805-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25431410

RESUMO

Uric-acid-utilizing soil bacteria were isolated, and 16s rRNA sequence was studied for strain identification. The most prominent uricase-producing bacterium was identified as Comamonas sp BT UA. Crude enzyme was extracted, freeze-dried and its Km and Vmax were determined as 40 meu M and 0.047 meu M min-1ml-1 using Line-weaver Burke plot. An activity of 80 U/mg of total protein was observed when cultured at 37 degree C for 84 h at pH 7. The purified enzyme was used to measure uric acid by spectrophotometric method and electrochemical biosensor. In the biosensing system the enzyme was immobilized on the platinum electrode with a biodegradable glutaraldehyde-crosslinked gelatin film having a swelling percentage of 109+/- 3.08, and response was observed by amperometry applying fixed potential. The electrochemical process as obtained by the anodic peak current and scan rate relationship was further configured by electrochemical impedance spectroscopy (EIS). The polymer matrix on the working electrode gave capacitive response for the electrode-electrolyte interaction. The sensitivity of the biosensor was measured as 6.93 meu A meu M -1 with a sensor affinity [Km(app)] of 50 mu M and 95 percent reproducibility after 50 measurements. The spectrophotometric method could be used in the range of 6-1000 mu M, whereas the biosensor generated linear response in the 1.5- 1000 mu M range with a response time of 24 s and limit of detection of 0.56 meu M. Uric acid was estimated in human blood samples by the biosensor and satisfactory results were obtained.


Assuntos
Comamonas/enzimologia , Urato Oxidase/química , Ácido Úrico/metabolismo , Técnicas de Cultura Celular por Lotes , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Comamonas/genética , Comamonas/isolamento & purificação , Comamonas/metabolismo , Técnicas Eletroquímicas , Estabilidade Enzimática , RNA Ribossômico 16S/química , Reprodutibilidade dos Testes , Microbiologia do Solo , Fatores de Tempo , Urato Oxidase/isolamento & purificação , Urato Oxidase/metabolismo
11.
Lett Appl Microbiol ; 58(6): 556-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24494800

RESUMO

UNLABELLED: This is the first reported study on the immobilization of living recombinant Escherichia coli cells that overexpress cyclopentanone monooxygenase in polyvinyl alcohol gel particles LentiKats®. Immobilized cells overexpressing cyclopentanone monooxygenase have been used as a model of biocatalyst for enantioselective Baeyer-Villiger biooxidation of rac-bicyclo[3.2.0]hept-2-en-6-one into regioisomeric lactones. This process is useful for the syntheses of cytostatic sarkomycin, several prostaglandins and other biologically active compounds. The original technique for qualitative analysis of enzyme expression within free cells and cells entrapped in LentiKats® using SDS-PAGE was developed and used for verification of optimal conditions for the induction of cyclopentanone monooxygenase. Here, we successfully performed six repeated batch Baeyer-Villiger biooxidations utilizing entrapped cells using 40% (w/v) polyvinyl alcohol gel particles in flasks with baffles. The latter conditions have been found to be the most appropriate achieving optimal oxygen transfer within LentiKats®. Moreover, immobilized cells retained their catalytic efficiency over six reaction cycles, while the catalytic efficiency of free cells decreased after three reaction cycles. SIGNIFICANCE AND IMPACT OF THE STUDY: Immobilization in polyvinylalcohol gel particles is desirable technique with presumptive impact on industrial applications of recombinant whole-cell Baeyer-Villiger monooxygenases as biocatalysts for production of bioactive compounds and precursors of potentially new drugs. An original immobilization of cells E. coli with overproduced Baeyer-Villiger monooxygenase improved their stability in repetitive batch biooxidations as compared to free cells. Detected autoinduction of recombinant enzyme in pET22b+ plays significant role in application of immobilized cells as it may increase specific activity of cells in repetitive use under growing reaction conditions. Original technique for qualitative analysis of enzyme expression within immobilized cells was developed.


Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/metabolismo , Oxigenases/biossíntese , Álcool de Polivinil/química , Proteínas de Bactérias/química , Biocatálise , Reatores Biológicos , Células Imobilizadas/enzimologia , Comamonas/enzimologia , Meios de Cultura , Géis , Lactonas , Oxirredução , Oxigênio/química , Oxigenases/química , Transformação Bacteriana
12.
Appl Biochem Biotechnol ; 172(6): 3194-206, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24500796

RESUMO

Indirubin, a red isomer of indigo, can be used for the treatment of various chronic diseases. However, the microbial production of indirubin did not receive much attention probably due to its low yield compared with indigo. In this study, the recombinant Escherichia coli containing the naphthalene dioxygenase (NDO) genes from Comamonas sp. MQ was used to produce indirubin from tryptophan. To enhance the production of indirubin, the induction conditions for NDO expression were optimized. The optimal induction conditions were carried out with 0.5 mM isopropyl-ß-D-thiogalactopyranoside at 30 °C when cells were grown to OD600 ≈ 1.20. Subsequently, the effects of medium composition on indirubin production were investigated by response surface methodology, and 9.37 ± 1.01 mg/l indirubin was produced from 3.28 g/l tryptophan. Meanwhile, the indirubin production was further improved by adding 2-oxindole and isatin to the tryptophan medium after induction. About 57.98 ± 2.62 mg/l indirubin was obtained by the addition of 500 mg/l 2-oxindole after 1-h induction, which was approximately 6.2-fold to that without additional 2-oxindole. The present study provided a possible way to improve the production of indirubin and should lay the foundation for the application of microbial indirubin production.


Assuntos
Proteínas de Bactérias/biossíntese , Comamonas/química , Dioxigenases/biossíntese , Escherichia coli/efeitos dos fármacos , Complexos Multienzimáticos/biossíntese , Triptofano/metabolismo , Proteínas de Bactérias/genética , Comamonas/enzimologia , Dioxigenases/genética , Indução Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Análise Fatorial , Expressão Gênica , Indóis/metabolismo , Indóis/farmacologia , Isatina/farmacologia , Isopropiltiogalactosídeo/farmacologia , Complexos Multienzimáticos/genética , Oxindóis , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
13.
Appl Environ Microbiol ; 79(19): 6148-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913423

RESUMO

It has been suggested that a novel type of aromatic acid transporter, which is similar to the tripartite tricarboxylate transporter (TTT), is involved in terephthalate (TPA) uptake by Comamonas sp. strain E6. This suggestion was based on the presence of the putative TPA-binding protein gene, tphC, in the TPA catabolic operon. The tphC gene is essential for growth on TPA and is similar to the genes encoding TTT-like substrate-binding proteins. Here we identified two sets of E6 genes, tctBA and tpiBA, which encode TTT-like cytoplasmic transmembrane proteins. Disruption of tctA showed no influence on TPA uptake but resulted in a complete loss of the uptake of citrate. This loss suggests that tctA is involved in citrate uptake. On the other hand, disruption of tpiA or tpiB demonstrated that both genes are essential for TPA uptake. Only when both tphC and tpiBA were introduced with the TPA catabolic genes into cells of a non-TPA-degrading Pseudomonas strain did the resting cells of the transformant acquire the ability to convert TPA. From all these results, it was concluded that the TPA uptake system consists of the TpiA-TpiB membrane components and TPA-binding TphC. Interestingly, not only was the tpiA mutant of E6 unable to grow on TPA or isophthalate, it also showed significant growth delays on o-phthalate and protocatechuate. These results suggested that the TpiA-TpiB membrane components are able to interact with multiple substrate-binding proteins. The tpiBA genes were constitutively transcribed as a single operon in E6 cells, whereas the transcription of tphC was positively regulated by TphR. TPA uptake by E6 cells was completely inhibited by a protonophore, carbonyl cyanide m-chlorophenyl hydrazone, indicating that the TPA uptake system requires a proton motive force.


Assuntos
Comamonas/enzimologia , Comamonas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Ftálicos/metabolismo , Comamonas/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade por Substrato
14.
Mol Microbiol ; 89(6): 1121-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23859214

RESUMO

Dehalogenation is the key step in the degradation of halogenated aromatics, while reductive dehalogenation is originally thought to rarely occur in aerobes. In this study, an aerobic strain of Comamonas sp. 7D-2 was shown to degrade the brominated aromatic herbicide bromoxynil completely and release two equivalents of bromides under aerobic conditions. The enzymes involved in the degradation of bromoxynil to 4-carboxy-2-hydroxymuconate-6-semialdehyde, including nitrilase, reductive dehalogenase (BhbA), 4-hydroxybenzoate 3-monooxygenase and protocatechuate 4,5-dioxygenase, were molecularly characterized. The novel dehalogenase BhbA was shown to be a complex of a respiration-linked reductive dehalogenase (RdhA) domain and a NAD(P)H-dependent oxidoreductase domain and to have key features of anaerobic respiratory RdhAs, including two predicted binding motifs for [4Fe-4S] clusters and a close association with a hydrophobic membrane protein (BhbB). BhbB was confirmed to anchor BhbA to the membrane. BhbA was partially purified and found to use NAD(P)H as electron donors. Full-length bhbA homologues were found almost exclusively in marine aerobic proteobacteria, suggesting that reductive dehalogenation occurs extensively in aerobes and that bhbA is horizontally transferred from marine microorganisms. The discovery of a functional reductive dehalogenase and ring-cleavage oxygenases in an aerobe opens up possibilities for basic research as well as the potential application for bioremediation.


Assuntos
Comamonas/enzimologia , Comamonas/metabolismo , Enzimas/genética , Herbicidas/metabolismo , Redes e Vias Metabólicas/genética , Nitrilas/metabolismo , Aerobiose , Biotransformação , Brometos/metabolismo , Comamonas/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Enzimas/metabolismo , Evolução Molecular , Transferência Genética Horizontal , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
15.
Protein Eng Des Sel ; 26(5): 335-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23442445

RESUMO

Nitrobenzene dioxygenase (NBDO) from Comamonas sp. is shown here to perform enantioselective oxidation of aromatic sulfides. Several para-substituted alkyl aryl sulfides were examined and it was found that the activity of the enzyme is dependent on the size of the substrate. Saturation mutagenesis was performed on different residues in the active site in order to improve activity and selectivity. Mutagenesis at position 258 in the α-hydroxylase subunit of NBDO improved both activity and enantioselectivity. Substitutions in position 293 improved the activity on all substrates and had diverse influence on enantioselectivity. Mutagenesis in position 207 provided two interesting variants, V207I and V207A, with opposite enantioselectivities. Furthermore, combining two favorable mutations, N258A and F293H, provided an improved variant with both higher activity (5.20 ± 0.01, 2.12 ± 0.21, 2.64 ± 0.14 and 4.01 ± 0.34 nmol min(-1) mg protein(-1) on thioanisole, ptolyl, Cl-thioanisole and Br-thioanisole, respectively, which is 1.7, 4.6, 7.1 and 26.7-fold compared with wild type) and improved enantioselectivity (e.g. 67% enantiomeric excess for Cl-thioanisole vs. 5% for wild type). Molecular docking and active site volume calculations were used to correlate between the structure of the substrates and the function of the enzymes. The results from this work suggest that the location of pro-chiral sulfides in the active site is coordinated by hydrophobic interactions and by steric considerations, which in turn influences the activity and enantioselectivity of NBDO.


Assuntos
Comamonas/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Engenharia de Proteínas , Sulfóxidos/metabolismo , Domínio Catalítico , Comamonas/química , Comamonas/genética , Dioxigenases/química , Simulação de Acoplamento Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Estereoisomerismo , Sulfetos/química , Sulfetos/metabolismo , Sulfóxidos/química
16.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 32-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23275161

RESUMO

Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.


Assuntos
Catecóis/química , Catecóis/farmacologia , Dioxigenases/antagonistas & inibidores , Dioxigenases/química , Aminofenóis/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Comamonas/enzimologia , Cristalização , Cristalografia por Raios X/métodos , Dioxigenases/metabolismo , Evolução Molecular , Ferro/química , Deficiências de Ferro , Subunidades Proteicas/química , Especificidade por Substrato
17.
Biotechnol Bioeng ; 110(1): 68-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22806613

RESUMO

Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non-surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven-step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo-enzymatic preparation of UDCA-the two-step reduction of dehydrocholic acid (DHCA) to 12-keto-ursodeoxycholic acid using a mutant of 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) from Collinsella aerofaciens and 3α-hydroxysteroid dehydrogenase (3α-HSDH) from Comamonas testosteroni. Three different one-pot reaction approaches were investigated using whole-cell biocatalysts in simple batch processes. We applied one-biocatalyst systems, where 3α-HSDH, 7ß-HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two-biocatalyst systems, where 3α-HSDH and 7ß-HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one-pot reaction. The best result was achieved by the one-biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12-keto-UDCA within 4.5 h in a simple batch process on a liter scale.


Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/métodos , Ácido Desidrocólico/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Ácido Ursodesoxicólico/metabolismo , Actinobacteria/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Clonagem Molecular , Comamonas/enzimologia , Ácido Desidrocólico/análise , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxiesteroide Desidrogenases/genética , Mycobacterium/genética , Mycobacterium/metabolismo , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/análise
18.
Curr Microbiol ; 65(4): 345-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22706798

RESUMO

The properties of bacterial isolates from polluted environments which are characterized by increased levels of oxidative stress do not reflect only the level of contaminants, but also arise as a consequence of many permanently changed conditions. The survival rate of Comamonas terrigena N3H isolates from an environment with elevated levels of H(2)O(2) is correlated with stimulation of catalase. The response of bacterial catalase to the effect of phenol in exogenous conditions was affected by the presence of an additional contaminant, Cd(2+). An isolate of Aspergillus niger selected from river sediment containing 363 mg/kg As, 93 mg/kg Sb at pH 5.2-4.8 grew on Czapek-Dox agar ~1.6 times faster than an isolate of the same species from coal dust sediment with approximately the same level of pollution (400 mg/kg As) but somewhat lower pH (3.3-2.8). It also exhibited differences in the microscopic characteristics of its mycelial structures. Both isolates exhibited a higher tolerance to the exogenic toxic effects of metals (As(5+), Cd(2+), and Cu(2+) at 5, 25, or 50 mg/L) than a control culture, but the differences in tolerance between them were only slight. These laboratory results suggest that there are complicated relationships which may exist in the "in situ" environment.


Assuntos
Aspergillus niger/metabolismo , Catalase/metabolismo , Comamonas/metabolismo , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Estresse Oxidativo , Aspergillus niger/enzimologia , Aspergillus niger/isolamento & purificação , Comamonas/enzimologia , Comamonas/isolamento & purificação , Farmacorresistência Bacteriana , Peróxido de Hidrogênio/metabolismo , Metais Pesados/metabolismo
19.
Microbiol Res ; 167(9): 550-7, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22281521

RESUMO

In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Aciltransferases/genética , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Comamonas/enzimologia , Escherichia coli/genética , Expressão Gênica , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Comamonas/química , Comamonas/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Hidroxibutiratos/metabolismo , Dados de Sequência Molecular , Óperon , Poliésteres/metabolismo , Alinhamento de Sequência
20.
J Biosci Bioeng ; 113(2): 173-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036075

RESUMO

Methylsubstituted naphthalenes constitute a significant part of light gas oil fractions (LGO). These are toxic compounds with low fuel value, and can potentially be enzymatically modified to increase the fuel value and at the same time reduce toxicity. The first step in the biodegradation of naphthalene involves dioxygenation of the aromatic ring catalysed by naphthalene dioxygenase (NDO). Here we show that recombinantly produced NDO from Ralstonia sp. U2 and the related nitrobenzene dioxygenase (NBDO) from Comamonas sp. JS765 can use several mono-, di-, tri-, and tetramethylated naphthalenes as substrates. For the majority of the substrates both enzymes catalyse the formation of a mixture of mono- and dioxygenated products, and it is only dioxygenated products that are likely to be processed further, leading to ring cleavage. In some cases, like for 1-methylnaphthalene, NDO mainly generates the monooxygenated form, while with NBDO, the dioxygenated form dominates. In other cases, as for 1,4-dimethylnaphthalene, the monooxygenated product dominates with NDO, whereas NBDO generates similar amounts of both forms. Presumably, the best future strategy for bioconversion of methylated naphthalenes in LGO is to develop engineered enzyme that are optimised with respect to the specific composition of naphthalene derivatives found in a given product.


Assuntos
Comamonas/enzimologia , Dioxigenases/metabolismo , Complexos Multienzimáticos/metabolismo , Naftalenos/metabolismo , Ralstonia/enzimologia , Dioxigenases/química , Nitrobenzenos/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...